Hélium


Hélium
HydrogèneHéliumLithium
Structure cristalline hexagonale

2
He
He
Ne
Table complèteTable étendue
Informations générales
Nom, symbole, numéroHélium, He, 2
Série chimiqueGaz rare
Groupe, période, bloc18, 1, s
Masse volumique0,1785 g·l-1 (0 °C,1 atm);

0,125 g·ml-1 (liquide,-268,93 °C)1

CouleurIncolore
No CAS7440-59-7 3
No EINECS231-168-5
Propriétés atomiques
Masse atomique4,002602 ± 0,000002 u1
Rayon atomique (calc)128 pm(31 pm)[réf. nécessaire]
Rayon de covalence28 pm 4
Rayon de van der Waals140 pm
Configuration électronique1s2
Électrons par niveau d’énergie2
État(s) d’oxydation0
Oxydeinconnu
Structure cristallineHexagonale
Propriétés physiques
État ordinaireGaz
Point de fusion0,95 K (26 atm)
Point d’ébullition-268,93 °C 1
Énergie de fusion5,23 kJ·mol-1
Énergie de vaporisation0,08 kJ·mol-1 (1 atm,-268,93 °C)1
Température critique-267,96 °C 1
Pression critique2,26 atm 5
Volume molaire21,0×10−3 m3·mol-1
Pression de vapeur
Vitesse du son1 300 m·s-1 5
Divers
Chaleur massiqueCp 20,79 J·mol-1·K-1 5
Conductivité thermique152,0 mW·m-1·K-1(26,85 °C)5
Énergies d’ionisation6
1re : 24,587387 eV2e : 54,417760 eV
Isotopes les plus stables
isoANPériodeMDEdPD
MeV
3He0,000137 %stable avec 1 neutrons
4He99,999863 %stable avec 2 neutrons
5He{syn.}7,6×10-23 sn?4He
6He{syn.}0,8067 sβ3,56Li
7He{syn.}2,9×10-21 sn0,386He
8He{syn.}0,1190 sβ10,08Li
Précautions
Directive 67/548/EEC7
Phrases S : 9,
SIMDUT8
A : Gaz comprimé
A,
SGH7
SGH04 : Gaz
Attention
H280, P403, P410,
Unités du SI & CNTP, sauf indication contraire.

Sur les autres projets Wikimedia :

L'hélium est un gaz noble ou gaz rare, pratiquement inerte. De numéro atomique 2, il ouvre la série des gaz nobles dans letableau périodique des éléments. Son point d'ébullition est le plus bas parmi les corps connus, et il n'existe sous forme solide qu'au-dessus d'une pression de 25 atm. Il possède deux isotopes stables : 4He, le plus abondant, et 3He. Ces deux isotopes, contrairement à ceux de la plupart des éléments chimiques, diffèrent sensiblement dans leurs propriétés, car le rapport de leurs masses atomiques est important. D'autre part, les effets quantiques, sensibles à basse énergie, leur donnent des propriétés très différentes. Le présent article traite essentiellement de l'4He. L'article hélium 3 compile les propriétés spécifiques de l'isotope 3He.

L'hélium est, après l'hydrogène, l'élément le plus abondant de l'Univers. Actuellement, pratiquement tout l'hélium a été produit lors de la nucléosynthèse primordiale. Les autres origines sont discutées ci-après dans la sous-section Abondance naturelle.

Son étymologie provient du grec Hélios (Ἥλιος / Hếlios), le Soleil, ce gaz ayant été observé pour la première fois dans le spectre solaire.


L'hélium est un gaz incolore, inodore et non toxique. Il est pratiquement
inerte chimiquement, monoatomique en toute circonstance. Dans un vaste domaine de températures et de pressions, il se comporte expérimentalement comme un gaz parfait, ce qui en fait une substance privilégiée pour l'expérimentation des théories physico-chimiques. Les 2 isotopes stables de l'hélium sont les seuls composés chimiques à ne pas posséder de point triple9.

Propriétés physiques

Isotopes

On connait huit isotopes de l'hélium, mais seuls l'hélium 3 et l'hélium 4 sont stables, tous les autres sont extrêmement instables, certains n'existant virtuellement que lors de leur formation. Dans l'atmosphère terrestre, il n'y a (environ) qu'un atome d'hélium 3 pour un million d'atomes d'hélium 410. Contrairement à la plupart des éléments, l'abondance isotopique de l'hélium varie considérablement selon son origine, en raison des processus de formation différents. L'isotope le plus abondant, l'hélium 4, est produit sur Terre par la radioactivité α d'éléments lourds : les particules α qui y sont produites sont des noyaux d'hélium 4 complètement ionisés. L'hélium 4 est un noyau à la stabilité inhabituelle, parce que ses nucléons sont arrangés en couches complètes.
À l'échelle de l'Univers, la grande partie de l'hélium présent a été formé (en quantités énormes, environ 25 % de toute la matière) lors de la nucléosynthèse primordiale11. Quasiment tout le reste de l'hélium produit, dans l'Univers, l'est (ou l'a été) lors de la nucléosynthèse stellaire.

L'hélium 3 n'est présent sur Terre qu'à l'état de traces ; la plupart date de la formation de la Terre, bien qu'un peu tombe encore dessus, piégé dans la poussière interstellaire12. Des traces sont aussi produites encore par la radioactivité β du tritium13. Les roches de la croûte terrestre ont des rapports isotopiques variant jusqu'à un facteur 10 et ces rapports peuvent être utilisés pour la détermination de l'origine des roches et la composition du manteau terrestre12. L'hélium 3 est bien plus abondant dans les étoiles, mais bien qu'il soit produit lors de la fusion nucléaire, les étoiles n'en relâchent que très peu (comme le deutérium et lelithium, ou le bore) car il n'apparait que dans une chaine intermédiaire menant à l'hélium 4 : il est « consommé » au fur et à mesure de sa production dans les étoiles. Par suite, dans le milieu interstellaire, le rapport isotopique est environ 100 fois plus élevé que sur Terre14. Les matériaux extraplanétaires, comme le régolithe de la Lune ou des astéroïdes, ont des traces d'hélium 3 provenant du vent solaire. La surface de la Lune en contient une concentration de l'ordre de 10-8 15,16. Un certain nombre d'auteurs, commençant par Gerald Kulcinski en 198617, ont proposé d'explorer la Lune, d'extraire l'hélium 3 du régolithe et de l'utiliser pour produire de l'énergie par fusion nucléaire.

L'hélium 4 peut être refroidi jusqu'à environ 1 K par évaporation. L'hélium 3, qui a un point d'ébullition inférieur, peut être refroidi jusqu'à 0,2 K par la même méthode. Des mélanges à parts égales d'hélium 3 et 4 se séparent, au-dessous de 0,8 K, car ils ne sont plus miscibles, en raison de leurs différences (l'atome d'hélium 4 étant un boson tandis que l'atome d'hélium 3 est unfermion, ils suivent deux statistiques quantiques différentesN 1). Les réfrigérateurs à dilution utilisent cette propriété pour atteindre quelques millikelvins.

On peut fabriquer par réactions nucléaires d'autres isotopes de l'hélium, qui sont instables, et se désintègrent rapidement vers d'autres noyaux. L'isotope dont la demie-vie la plus courte, si on peut même parler d'isotope dans ce cas, est l'hélium 2 (2 protons, sans neutron : le diproton, qui se désintègre en deux protons en 3×10-27 s). L'hélium 5 et l'hélium 7 se désintègrent par émission d'un neutron, avec une demi-vie de 7,6×10-23 s et 2,9×10-21 s, respectivement. L'hélium 6 et l'hélium 8 se désintègrent par radioactivité β, avec une demi-vie de 0,8 s et 0,119 s, respectivement. Les isotopes 6 et 8 ont une structure lâche, dans laquelle des neutrons orbitent loin du cœur, ce que l'on appelle halo nucléaire.

Gaz

La conductivité thermique de l'hélium gazeux est supérieure à celle de tous les gaz, sauf l'hydrogène, et sa chaleur spécifique est exceptionnellement élevée. Son coefficient Joule-Thomson est négatif à température ambiante, ce qui signifie que, contrairement à la plupart des gaz, il se réchauffe lorsqu'il peut se détendre librement. La température d'inversion de Joule-Thomson est d'environ 40 K soit-233,15 °C à la pression d'1 atm18. Une fois refroidi en dessous de cette température, l'hélium peut être liquéfié par le refroidissement dû à sa détente.

L'hélium est aussi le gaz le moins hydrosoluble de tous les gaz connus19. En raison de la petite taille de ses atomes, sa vitesse de diffusion à travers les solides est égale à trois fois celle de l'air et environ 65 % celle de l'hydrogène.

L'indice de réfraction de l'hélium est plus proche de l'unité que celui de n'importe quel autre gaz20. La vitesse du son dans l'hélium est supérieure à celle dans tout autre gaz, sauf l'hydrogène21.

Contrairement au plasma, le gaz est un excellent isolant électrique.

Plasma

Une lampe à décharge fonctionnant à l'hélium.

La plupart de l'hélium extraterrestre se trouve dans l'état de plasma, dont les propriétés diffèrent notablement de celles de l'hélium atomique. Dans le plasma, les électrons de l'hélium ne sont pas liés au noyau, ce qui conduit à une très grande conductivité électrique, même quand l'ionisation est partielle. Les particules chargées sont très sensibles aux champs électrique et magnétique. Par exemple, dans le vent solaire, l'hélium et l'hydrogène ionisés interagissent avec la magnétosphère terrestre, donnant lieu aux phénomènes decourants de Birkeland et aux aurores polaires22.

Comme les autres gaz nobles, l'hélium a des niveaux d'énergie métastables qui lui permettent de rester excité dans une décharge électrique dont la tension est inférieure à son potentiel d'ionisation. Ceci permet son utilisation dans les lampes à décharge.

Liquide

Contrairement aux autres éléments, l'hélium reste liquide jusqu'au zéro absolu, à des pressions inférieures à 25 atm. Ceci est une conséquence directe de la mécanique quantique : plus précisément l'énergie des atomes dans l'état fondamental du système est trop élevée pour permettre la solidification (voir sous-chapitre #Solide).

Au-dessous du point d'ébullition à 4,22 K et au-dessus du point lambda à 2,1768 K, l'hélium 4 existe sous forme d'un liquide normal incolore, appelé hélium I18. Comme les autres liquides cryogéniques, il bout quand il est chauffé et se contracte quand sa température est abaissée. L'hélium I a un indice de réfraction voisin de celui des gaz : 1,026 ; ce qui rend sa surface tellement difficile à apercevoir que l'on utilise souvent des flotteurs de mousse de polystyrène pour voir son niveau23. Ce liquide incolore a une viscosité très faible et une densitéde 0,125 = 1/8, ce qui n'est qu'un quart de la valeur prévue par la physique classique23. Il faut recourir à la mécanique quantique pour expliquer cette propriété et donc l'hélium liquide sous ses diverses formes est appelé fluide quantique, pour signifier que les effets de la mécanique quantique, normalement sensibles seulement à l'échelle microscopique, se manifestent à l'échelle macroscopique car l'atome d'hélium 4 est un boson. Ceci s'interprète comme une conséquence du fait que le point d'ébullition est si rapproché du zéro absolu que les mouvements thermiques aléatoires ne peuvent plus masquer les propriétés atomiques23.

Superfluide

L'hélium liquide en dessous du point lambda commence à présenter des caractères tout à fait inhabituels, dans un état appelé hélium II.

À la transition de l'hélium I vers l'hélium II au point lambda, l'hélium se dilate. Quand la température baisse, l'hélium II continue à se dilater, jusqu'environ 1 K, où il recommence à se contracter comme la plupart des corps.

L'hélium II peut s'écouler à travers des capillaires de 10-7 à 10-8 m, sans viscosité mesurable10. Cependant quand on mesure la viscosité entre deux disques tournant l'un par rapport à l'autre, on trouve une viscosité comparable à celle de l'hélium gazeux. La théorie actuelle explique ce fait en utilisant un modèle à deux fluides de László Tisza pour l'hélium II. Dans ce modèle, l'hélium liquide, au-dessous du point lambda, consiste en un mélange d'atomes d'hélium dans l'état fondamental et d'atomes dans des états excités, qui se comportent davantage comme un fluide ordinaire24.

Une illustration de cette théorie est donnée par l'effet fontaine. Dans cette expérience, un tube vertical, présentant un petit ajutage à son extrémité supérieure, est plongé par son extrémité inférieure dans un bain d'hélium II. Il y est bouché par un disque fritté, au travers duquel seul le fluide sans viscosité peut circuler. Si l'on chauffe le tube, en l'éclairant par exemple, on va y transformer la partie superfluide en fluide ordinaire. Pour rétablir l'équilibre des deux fluides avec le bain, du superfluide va pénétrer à travers le bouchon fritté, et pour conserver le volume, une partie du contenu du tube sera éjecté par l'ajutage supérieur, formant un jet, que l'on peut interrompre en cessant de chaufferN 2.

La conductivité thermique de l'hélium II est supérieure à celle de tout autre corps connu. Ceci empêche l'hélium II de bouillir, car tout apport de chaleur se transporte immédiatement à la surface, où il provoque tout simplement l'évaporation en gaz. Cette conductivité est un million de fois supérieure à celle de l'hélium I, et plusieurs centaines de fois celle du cuivre18. Ceci est dû au fait que la conduction de la chaleur se fait par un mécanisme quantique exceptionnel. La plupart des matériaux bons conducteurs de la chaleur ont une bande de valenced'électrons libres qui servent à conduire la chaleur. L'hélium II n'a pas de telle bande et pourtant conduit bien la chaleur. Le flux de chaleur obéit à des équations semblables auxéquations d'onde de la propagation du son dans l'air. Quand de la chaleur est introduite, elle se déplace à 20 m⋅s-1 à 1,8 K dans l'hélium II. On appelle ces ondes deuxième son25.

L'hélium II rampe sur les surfaces de façon à rétablir l'équilibre hydrostatique.

Contrairement aux liquides ordinaires, l'hélium II rampe le long des surfaces, même, apparemment, contre la gravité. Il s'échappera d'un récipient non fermé en rampant sur les côtés, à moins qu'il ne rencontre un endroit moins froid où il s'évapore. Quelle que soit la surface, il se déplace en un film de quelque 30 nm. Ce film est appelé film de Rollin, en souvenir du physicien qui l'a caractérisé le premier, Bernard V. Rollin25,26,27. Suite à cet effet et à la capacité de l'hélium II de passer rapidement à travers de petites ouvertures, il est difficile de confiner l'hélium liquide. À moins que le récipient ne soit astucieusement construit, l'hélium II escaladera les parois et passera à travers les vannes jusqu'à ce qu'il atteigne une région plus chaude où il s'évaporera. Les ondes qui se propagent le long d'un film de Rollin obéissent aux mêmes équations que les vagues en eau peu profonde, mais la force de rappel est ici la force de van der Waals à la place de la gravité28. Ces ondes sont connues sous le nom detroisième son29.

Solide

L'hélium ne se solidifie que sous l'effet de fortes pressions. Le solide pratiquement invisible et incolore qui en résulte est fortement compressible ; une compression en laboratoire peut réduire son volume de plus de 30 %30. Avec un module d'élasticité cubique de l'ordre de 5×107 Pa, il est cinquante fois plus compressible que l'eau. Dans des conditions normales de pression, et à l'inverse des autres éléments, l'hélium ne se solidifie pas et reste liquide jusqu'au zéro absolu. L'hélium solide nécessite une pression minimale d'environ 26 atm. Il est souvent assez difficile de distinguer l'hélium solide de l'hélium liquide, leurs indices de réfraction étant presque identiques. Le solide a une chaleur latente (chaleur de fusion) élevée et une structure cristalline hexagonale, comme celle de l'eau.

Propriétés chimiques

Avec le néon, l'hélium est chimiquement le moins réactif de tous les corps dans les conditions normales, en raison de sa valence égale à 030. Il peut néanmoins former des composés instables (excimères) avec le tungstène, l'iode, le fluor, le soufre et le phosphore en phase plasma, par décharge ou d'une autre manière. HeNe, HgHe10, WHe2 et les ions moléculaires He2+, He2++, HeH+, HeD+ ont été créés de cette manière. Cette technique a aussi permis la production de la molécule neutre He2, qui possède un plus grand nombre de systèmes de bandes, et HgHe, dont la cohésion ne semble reposer que sur des forces de polarisation. Théoriquement, d'autres composants comme le fluorohydrure d'hélium (HHeF) sont également possibles.

Il semblerait à l'heure actuelle que les seuls composés stables de l'hélium prouvés soient des complexes endoédriques de fullerènes, comme He@C60, qui désigne un atome d'hélium emprisonné dans une cage de fullerène C60.

Propriétés biologiques

L'hélium, neutre, dans les conditions standard, est non-toxique, ne joue aucun rôle biologique et on en trouve à l'état de traces dans le sang humain. Si l'on en inhale assez pour que ledioxygène nécessaire à une respiration normale soit déplacé, l'asphyxie devient possible.

Inhalation

Fichier audio
Texte lu à l'hélium (info)
Si besoin, utilisez la touche page précédente du navigateur en fin d'audition.

(en) Helium is a colorless, odorless, tasteless, non-toxic, inert monatomic chemical element, that heads the noble gas series in the periodic table and whose atomic number is 2. Its boiling and melting points are the lowest among the elements and it exists only as a gas except in extreme conditions.


Des difficultés  pour  écouter le fichier ? Des problèmes pour écouter le fichier ?

La voix d'un individu qui a inhalé de l'hélium change temporairement de timbre vers les harmoniques élevés — la vitesse du sondans l'hélium est presque trois fois celle dans l'air — et comme la fréquence fondamentale d'une cavité remplie de gaz est proportionnelle à la vitesse du son, l'inhalation d'hélium correspondra à une augmentation des fréquences de résonance de l'appareil phonatoire qui modulent la fréquence fondamentale donnée par les cordes vocales10,31,32. Un effet opposé, de baisse de timbre, peut être obtenu en inhalant un gaz dense, comme l'hexafluorure de soufre.

L'inhalation d'hélium à faible dose est normalement sans danger. Cependant l'utilisation d'hélium du commerce tout venant, comme celui utilisé pour gonfler des ballons, peut être dangereuse en raison des nombreux contaminants qu'il peut contenir, traces d'autres gaz, ou aérosols d'huile lubrifiante.

L'inhalation d'hélium en excès peut être dangereuse, puisque l'hélium est simplement un asphyxiant, qui remplace le dioxygène nécessaire à une respiration normale10,33. La respiration d'hélium pur provoque l'asphyxie en quelques minutes. L'inhalation de l'hélium directement à partir de cylindres sous pression est extrêmement dangereuse, en raison du fort débit, qui peut résulter en un barotraumatisme qui déchire le tissu pulmonaire et peut être fatal33,34. Cependant cet accident est assez rare, puisqu'on ne compte que deux décès entre 2000 et 2004 aux États-Unis34.

À haute pression (plus de 20 atm ou 2 Mpa), un mélange d'hélium et de dioxygène (héliox) peut conduire à un syndrome nerveux des hautes pressions, une espèce d'effet contre-anesthésique. En ajoutant un peu de diazote au mélange, on peut éviter le problème35,36. Néanmoins en plongée subaquatique, le syndrome nerveux des hautes pressions ne peut être contrecarré que par l'adjonction au mélange d'hydrogène. L'ajout de diazote étant - hautement - narcotique dès lors que la pression absolue atteint 5 bars.

Utilisation thérapeutique

L'hélium est administré dans des mélanges contenant un minimum de 20 % de dioxygène, à des patients aux prises avec une obstruction des voies respiratoires supérieures ou inférieures. La faible viscosité de l'hélium permet ainsi de diminuer le travail respiratoire.

Sécurité

En ce qui concerne l'hélium cryogénique, les mesures de sécurité sont semblables à celles nécessaires pour l'azote liquide ; sa température extrêmement basse peut causer des brûlures par le froid.

Une inhalation dune grande quantité en une seule prise, produit une légère asphyxie, conduisant à une courte mais dangereuse perte de conscience. On dénombre également certains cas d'embolies cérébrales ou de sérieux problèmes pulmonaires chez les personnes ayant inhalé de l'hélium sous pression.

Par ailleurs, le taux de dilatation entre la phase liquide et la phase gazeuse est tel qu'il peut provoquer des explosions en cas de vaporisation rapide, si aucun dispositif de limitation de pression n'est installé.

Les réservoirs d'hélium gazeux à 5–10 K doivent aussi être manipulés comme s'ils contenaient de l'hélium liquide, en raison de la dilatation thermique importante et rapide qui a lieu quand de l'hélium à moins de 10 K est amené à la température ordinaire30.

Usages

Malgré son prix élevé, l'hélium est utilisé pour de nombreux usages exigant certaines de ses propriétés uniques, telles son point d'ébullition bas, sa faible densité, sa faible solubilité, sa haute conductivité thermique ou son caractère chimiquement et biologiquement inerte. On le trouve dans le commerce sous forme liquide ou gazeuse. Sous forme liquide, on peut trouver des petits réservoirs appelés dewars, qui peuvent contenir jusqu'à 1 000 l d'hélium, ou dans des grands réservoirs ISO de capacités nominales jusqu'à 40 000 l. Sous forme gazeuse, de petites quantités d'hélium sont fournies dans des cylindres à haute pression contenant jusqu'à 8,5 m3 standards, tandis que les grandes quantités sont livrées en camions-citernes sous pression qui peuvent avoir des capacités jusqu'à 5 000 m3 standards.

Industriels

En raison de son caractère inerte, sa grande conductivité thermique, sa transparence aux neutrons et parce qu'il ne forme pas d'isotope radioactifs au sein des réacteurs, on utilise l'hélium comme fluide de transfert de chaleur dans certains réacteurs nucléaires refroidis au gaz37.

L'hélium est utilisé comme atmosphère protectrice lors de la croissance du silicium monocristallin destiné à la fabrication de circuits intégrés et des fibres optiques, pour la production detitane et de zirconium, et en chromatographie en phase gazeuse30, parce qu'il est inerte. Vu son inertie chimique, ses propriétés thermodynamiques et calorifiques idéales, sa vitesse du son élevée et un grand coefficient de Laplace, il est également utile dans les souffleries supersoniques38 ou pour les installations d'étude de phénomènes transitoires39.

L'hélium en mélange avec un gaz plus lourd, comme le xénon, est utile pour la réfrigération thermoacoustique, en raison du grand rapport des capacités thermiques et du faible nombre de Prandtl40. L'inertie chimique de l'hélium a des avantages environnementaux sur d'autres systèmes de réfrigération, qui contribuent au trou d'ozone ou au réchauffement climatique41.

Comme il diffuse à travers les solides trois fois plus vite que l'air, l'hélium est utilisé pour détecter les fuites dans les équipements à ultravide ou les réservoirs à haute pression37.

Il est également utilisé avec des produits alimentaires (additif alimentaire autorisé par l'Union européenne sous la référence E939) pour permettre une vérification de l'étanchéité de l'emballage (voir liste des additifs alimentaires).

Scientifiques

L'hélium liquide est utilisé pour refroidir les aimants supraconducteurs des appareils à IRM modernes

L'utilisation de l'hélium réduit les effets de distorsion dus aux variations de température dans l'espace séparant les lentilles de certainstélescopes ou lunettes, en raison de son indice de réfraction exceptionnellement bas18. Cette méthode est spécialement utilisée pour les télescopes solaires, soumis à des variations importantes de température, mais pour lesquels une enceinte supportant la différence de pression entre l'atmosphère et le vide serait trop lourde42,43.

L'âge des roches et minéraux qui contiennent de l'uranium et du thorium peut être estimé en mesurant leur contenu en hélium par un procédé appelé datation à l'hélium10,18.

L'hélium liquide est aussi utilisé pour refroidir certains métaux aux températures extrêmement basses nécessitées pour la supraconductivité, par exemple pour les aimants supraconducteurs utilisés notamment pour les détecteurs à IRM. Le LHC au CERN utilise 96 t d'hélium liquide pour maintenir la température des aimants à 1,9 K44. De façon plus générale, l'hélium à basse température est utilisé en cryogénie.

Commerciaux et de loisir

En raison de sa faible solubilité dans le tissu nerveux, on utilise des mélanges d'hélium tels que le trimix, l'héliox et l'héliair pour la plongée profonde, afin de réduire les effets de la narcose à l'azote45,46. Aux profondeurs supérieures à 150 m, de petites quantités d'hydrogène sont ajoutées au mélange hélium-dioxygène pour contrebalancer le syndrome nerveux des hautes pressions47.

À ces profondeurs, la faible densité de l'hélium diminue considérablement l'effort respiratoire48.

Les lasers He-Ne ont diverses applications, en particulier les lecteurs de code-barres10.

Dirigeables, ballons et fusées

En raison de sa faible densité et de son incombustibilité, l'hélium est le gaz préféré pour gonfler des dirigeables tels que ce dirigeable publicitaire.

Comme l'hélium est plus léger que l'air, il peut être utilisé pour gonfler des dirigeables et des ballons libres ou captifs. Bien que l'hydrogène ait une force portante approximativement 7 % supérieure, l'hélium a l'avantage d'être incombustible (et même ignifuge)49.

L'exploration de l'atmosphère, notamment pour la météorologie s'effectue avec des ballons-sondes la plupart du temps gonflés à l'hélium.

En technique des fusées, l'hélium est utilisé comme milieu de déplacement pour gérer par pressurisation le combustible et le comburant dans les réservoirs en microgravité et pour assurer le mélange d'hydrogène et de dioxygène qui alimente les tuyères de propulsion. Il est aussi utilisé pour la purge de ces substances dans l'équipement au sol avant le lancement, et pour pré-refroidir l'hydrogène liquide des véhicules spatiaux. Par exemple, la fusée Saturn V consommait environ370 000 m3 d'hélium pour décoller30.

Ressources et purification de l'hélium

Abondance naturelle

L'hélium est le deuxième élément le plus abondant dans l'Univers connu après l'hydrogène et en constitue 23 % de la masse baryonique10. La grande majorité de l'hélium a été formé par la nucléosynthèse primordiale, dans les minutes suivant le Big Bang. C'est pourquoi la mesure de son abondance contribue à fixer certains paramètres des modèles cosmologiques. Dans la majeure partie de l'existence des étoiles, il est formé par la fusion nucléaire de l'hydrogène. En fin de vie, les étoiles utilisent l'hélium comme matière première pour la création d'éléments plus lourds, par des processus bien plus rapides, voire explosifs. Au final, l'hélium de l'Univers ne provient qu'en très faible partie des étoiles.

Dans l'atmosphère terrestre, la concentration de l'hélium est 5,2×10-6 en volume50,51. Cette basse concentration est assez constante dans le temps, en raison d'un équilibre entre la production continue d'hélium dans les roches et la fuite vers l'espace par divers mécanismes52,53. Dans l'hétérosphère terrestre, une partie de la haute atmosphère, l'hélium et autres gaz légers sont les constituants les plus abondants.

Presque tout l'hélium sur Terre provient de la radioactivité α. On le trouve principalement dans les composés d'uranium et de thorium, notamment la pechblende, la carnotite et lamonazite, parce qu'ils émettent des particules α, qui sont des noyaux d'hélium ionisé He2+, qui se neutralisent immédiatement avec des électrons. On estime à 3 000 t l'hélium ainsi produit chaque année dans la lithosphère54,55,56. Dans la croûte terrestre, la concentration de l'hélium est 8×10-6 en volume. Dans l'eau de mer, elle n'est que de 4×10-12. Il y en a aussi de petites quantités dans les eaux minérales, les gaz volcaniques et le fer météoritique. Comme l'hélium est piégé comme le gaz naturel par les couches de roches imperméables, on trouve les plus hautes concentrations d'hélium dans les gisements de gaz naturel, d'où l'on extrait la plupart de l'hélium commercial. Sa concentration en volume par rapport au gaz naturel varie de quelques parties par million à une concentration de 7 % identifiée dans le comté de San Juan, Nouveau-Mexique57,58.

0 commentaires:

Enregistrer un commentaire